MODEL ELECTRICAL ENERGY COMPLIANCE FORM FOR NEW BUILDINGS (Reference: ASHRAE/IESNA 90.1 - 1989, User's Manual - November 1992) | Project 1 | Name: | | _Date: | |-----------|---|-----------|--| | Address | : | | | | Designe | r: | Геlephone | e: () | | Docume | entation Author: | Γelephone | e: () | | | ELECTRICAL SUMMARY | | | | | BASIC REQUIREMENTS | | WORKSHEETS | | | <u>Distribution</u> | | Transformer Loss Worksheet | | | Electrical power feeders are subdivided by usage as required5.4.1.1 | | (E-2) if the total capacity of
the transformers exceeds 300
KVA. | | | Each tenant with a connected load over 100 KVA is provided with a separate distribution feeder5.4.1.2 | | Transformer Calculations attached. | | | All required separate feeders have either permanent check meters or provisions for attachment of portable meters5.4.1.3 and 5.4.1.4 | | | | | <u>Transformers</u> | | | | | Calculations for annual energy costs of transformer losses have been made and will be provided to the owner5.4.2.2 | | | | | Total transformer capacity (excluding utility transformer)KVA5.4.2 | | | | | Annual energy costs of transformer losses \$/yr5.4.2 | | | | | <u>Motors</u> | | | | | All motors in excess of 1 HP which are expected to operate more than 1000 hours per year or exceed the requirements of Table 5-1 as required5.4.3.4 | | | | | Motor horsepower ratings do not exceed 125% of the calculated maximum loads as applicable5.4.3.4 | | | | | <u>Completion</u> | | | | | The plans or specifications spell out the requirements for operations and maintenance information to be provided to the owner5.4.4 | | | #### TRANSFORMER LOSS WORKSHEET | A | Average Electrical Rate (\$/kWh) | | | | | |-------------|---|--|--|--|--| | | Transformer Tag | | | | | | В | Rating (kVA) | | | | | | C | Rated Temperature Rise (°F) | | | | | | D | Cooling Medium | | | | | | Е | Rated No-Load Transformer Loss (%) | | | | | | F | Rated Full-Load Coil Loss (kw) | | | | | | G | Annual No-Load Losses (kWh) 8760 x B x E | | | | | | Н | Annual Hours of Low-Load
Operation (10% to 50%) | | | | | | I | Annual Low-Load Losses (kW) 0.10 x F x H | | | | | | J | Annual Hours of Mid-Load
Operation (50% to 80%) | | | | | | K | Annual Mid-Load Losses (kWh) 0.40 x F x J | | | | | | L | Annual Hours of High-Load
Operation (80% to 100%) | | | | | | M | Annual High-Load Losses (kWh) 0.80 x F x L | | | | | | N | Total Annual Losses (kWh)
G+I+K+M | | | | | | О | Total Cost of Annual Losses (\$/yr)
N x A | | | | | | Loss
yr) | Cost of Annual Cost of Transformer es(\$/ n of all entries in Row O) | | | | | # LIGHTING SUMMARY | Compliance App | oroach: Prescriptive Method | System Performance | ce Method | Cost Budge Method | |----------------|--|-------------------------|--------------------|--| | | | | | | | BASIC I | REQUIREMENTS/PRESCRIPTIVE/PI | ERFORMANCE | | WORKSHEETS | | | Exterior Lighting | | | terior Lighting Power
Vorksheet (L-2) | | Exterior6.4. | lighting not intended for 24-hour use of 2.8 | ontrolled by photocell. | | formance Lighting Power
Vorksheet (L-4) | | | \leq Installed ELP | ELPA6.4.1 | . | escriptive Interior Lighting | | | | LLI 710.4.1 | | ower Worksheet (L-3) | | | Controls alled lighting control points equal or excontrol points in each and every room | | _ | ghting Control Points
Vorksheet (L-5) | | Shut-off6.4. | control in each space enclosed by ceiling 2.1 | ng high partitions. | LT | GSTD Output | | Controls | s readily accessible to personnel occupy
2.6 | ing the space. | | | | | otel guest rooms have master switches a lights and receptacles6.4.2.7 | at the main door to | | | | | Interior Lighting | | | | | | ent Lamp ballast meet or exceed the ballast) in Table 6-46.4.4.1 | llast efficiency | ALP | ≤≤
ILPA(6.5 or 6.6) | | | ent lamp use multiple lamp ballasts with red6.4.4.3 | h tandem wiring | Lighting P Applied | ower Control Credits | | Fluoresc6.4.4 | tent lamp ballast have a 90% or greater a 4.4 | power factor. | Daylight S | ensing Controls | | | | I | Occupancy | Sensors | | | | I | Programm | able Timing Controls | | | | Ţ | Lumen Ma | nintenance Controls | meecnew.doc L-1 Revised 1/00 #### EXTERIOR LIGHTING POWER WORKSHEET ### **Exterior Lighting Power Allowance - ELPA (6.4.1 & Table 6-1)** | A | В | C | D | |--|-----------------------------------|---|---------------| | Area Description | Allowance (Table 6-1) | Area or Lineal Feet
in Proposed Design | ELPA
(BxC) | | Exit (with or without canopy) | 25 W/lf of door opening | | | | Entrance (without canopy) | 30 W/lf of door opening | | | | High Traffic Entrance (with canopy) | 10 W/ft² of canopied area | | | | Light Traffic Entrance (with canopy) | 4 W/ft² of canopied area | | | | Loading Area | 0.40 W/ft² | | | | Loading Door | 20 W/lf of door opening | | | | Building Exterior Surfaces or Facades | 0.25 W/ft² of illuminated surface | | | | Storage and Non-Manufacturing Work Areas | 0.20 W/ft² | | | | Casual Use Areas (gardens, etc.) | 0.10 W/ft ² | | | | Private Driveways or Walkways | 0.10 W/ft² | | | | Public Driveways or Walkways | 0.15 W/ft² | | | | Private Parking Lots | 0.12 W/ft² | | | | Public Parking Lots | 0.18 W/ft² | | | | | | Total ELPA 👈 | | # **Installed Exterior Lighting Power** | A | В | С | D | |--------------|---------------------------|-----------------------|-------------------------| | Fixture Type | # of Luminaires Installed | Watts per Luminaire | Installed Watts (B x C) | Total Installed ELP → | | | | | | | #### PRESCRIPTIVE INTERIOR LIGHTING POWER WORKSHEET ### **Interior Lighting Power Allowance - ILPA (6.5 & Table 6-5)** | A | В | C | D | |------------------------------------|--------------|-----------------|------------------------| | Building Type or
Space Activity | GLA
(ft²) | ULPA
(W/ft²) | ILPA
(W)
[B x C] | | | | | | | | | | | | | | | | | | Σ | ILPA → | | ### **Interior Lighting Power Design (6.42 & 6.43)** | A | В | C | D | Е | F | G | Н | |-------------|------------------|--------------------------|----------------------|------------------------|-----------------------------------|--------------------------|---------------------------| | Space
ID | Luminaire
Tag | Luminaire
Description | Number of Luminaires | Watts Per
Luminaire | Connected
Power (W)
[D x E] | PAF | ALP
(W)
[F x (1-G)] | ∑ CLP → | | \sum ALP \rightarrow | | #### PERFORMANCE INTERIOR LIGHTING POWER WORKSHEET ### **Interior Lighting Power Allowance - ILPA (6.6)** | A | В | C | D | Е | F | G | Н | |-------------|---------------------------|---------------|----------------|------------------------|----------------|---------------------------|--------------------------| | Room
Tag | Ceiling
Height
(ft) | Area/Activity | UPD
(W/ft²) | Floor
Area
(ft²) | Area
Factor | # of
Similar
Spaces | LPB (W)
[DxExFx
G] | ∑ ILPA→ | | | | | | | | ## Interior Lighting Power Design (6.42 & 6.43) | Space
ID | Luminaire
Tag | Luminaire Description | Number of
Luminaires | Watts per
Luminaire | Connected
Power (W)
[D x E] | PAF | ALP
(W)
[F x (1-G)] | |-------------|------------------|-----------------------|-------------------------|------------------------|-----------------------------------|-----|---------------------------| ∑ ILPA → | | | | | | | | # LIGHTING CONTROL POINTS WORKSHEET # **Lighting Control Points (6.4.2.2, 6.4.2.3 & Table 6-2)** | A | В | С | D | Е | F | G | Н | I | J | K | L | M | |--|---------------|---------------|----------------------|--------------------|----------------------------------|----------------------------------|---------------------|-----------|------------------|---------------------|--------------------|--------------------| | Space Description LCP Required (6.4.2.2) | | | | | | LCP Ins | talled (6 | 5.4.2.3 & | Table 6 | 5-2) | | | | Room
Tag | Area
(ft²) | # of
Tasks | by Area
[1+B/450] | by Task
[1+C] | Total
Required
[min (H:M)] | Total
Installed
[sum(H:M)] | On/Off
(1 Point) | Осс | Timer (2 Points) | 3 Levels (2 Points) | 4 Level (3 Points) | Dimming (3 Points) | | | | | | | <u> </u> | ≦ | | | | | 1 | | | | | | | | 5 | ≦ | | | | | | | | | | | | | ≤ | ≦ | | | | | | | | | | | | | <u><</u> | ≤ | | | | | | | | | | | | | | ≦ | | | | | | | | | | | | | <u> </u> | ≦ | | | | | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | | | | | ≤ | <u></u> | | | | | | | | | | | | | ≤ | ≦ | | | | | | | | | | | | | ≤ | ≦ | | | | | | | | | | | | | ≤ | ≦ | | | | | | | | | | | | | <u> </u> | ≦ | | | | | | | | | | | | | ≤ | ≦ | | | | | | | | | | | | | ≤ | ≦ | | | | | | | | | | | | | <u> </u> | ≦ | | | | | | | | | | | | | <u> </u> | ≦ | | | | | | | | | | | | | < | <u> </u> | | | | | | | | | | | | | <u> </u> |
≦ | | | | | | | | | | l | l . | | I . | | | | | | | | #### INTERNAL LOAD DENSITY A. Provide the internal load density (ILD) according to Article 8.5.5.2, ASHRAE 90.1, 1989. $$ILD = LPD + EPD + OLA =$$ $$LPD = \underbrace{ILPA}_{GLA}$$ B. For shell and speculative buildings' ILD, refer to Article 8.4.6 and Table 8-1 of ASHRAE 90.1, 1989.